社区 > 求职面经 > 腾讯自然语言处理实习面经

腾讯自然语言处理实习面经

想要更好 发布于2020-12-09 13:52:15   78浏览

简介 :985硕士,研究方向自然语言处理。师兄在腾讯,就让师兄内推了一下腾讯自然语言处理的实习。在内推前,简单把李航的统计学习方法,简历涉及的知识点都过了一遍,整理了一下,同时leetcode刷了大概100题。 

准备过后就把简历给师兄了。投完简历当天下午就收到了腾讯的短信约晚上面试(这也太效率了= =)。下面简单记录一些面试的问题(很多问题都是项目涉及的知识点,每个人可能都不一样)。

一面(技术面)

基本就是把简历过了一遍,问问一些项目上的细节。

1、先简单自我介绍一下吧。

2、看你之前实习过,说说当时实习都做了些啥。

3、介绍一下transformer吧,除了self-attention还知道哪些attention。

4、看你用了反向翻译,简单介绍一下吧,除了这个还知道哪些数据扩充的方法吗,每个方法有什么区别?

5、介绍一下R2L-Rerank吧。

6、讲一讲bert,roberta吧,BPE和word piece有什么区别?

7、介绍一下FGM。

8、介绍一下Focal loss。

9、python的迭代器和生成器。

10、算法题:打印二叉树从右边看能看到的节点。

一面还算顺利结束后第二天就接到了二面的电话。

二面(技术面)

基本也是把项目比赛过一遍,然后问一些细节。

1、简单介绍一下自己吧。

2、介绍一下AUC吧,和准确率有啥区别。

3、介绍一下F-score,Macro-F1和micro-F1有啥区别。

4、bert如果输入超过512怎么办。

5、那你介绍一下transformer-xl吧。

6、如果你自己训练输入长度为1024的bert,使用的显存会是原来的几倍。

7、你在投的论文做的是什么,介绍一下,看你是用fairseq框架写的,具体修改了哪些模块。

8、算法题:最长上升子序列。

9、用过单机多卡或者多机多卡训练吗?讲一讲。

10、你有什么要问我的吗?

二面也比较顺利,第二天就接到了三面的电话。

三面(技术面)

我当时看面经别人都是两面,我居然有三面= = ,三面应该是一个leader面的。

1、之前实习是负责什么的,大概开发的流程是什么样的。

2、你做的这些项目是偏实验的的还是有一定的工业落地的,比如做了一个网站或者api等。

3、你们平常打比赛的时候,队伍是怎么合作的?

4、你做的项目里的公开数据集你知道是怎么采集的吗?它会不会有很多脏数据?这些脏数据对模型有什么影响?你是怎么处理它们的?

5、有看过模型的bad case吗?针对bad case做了哪些提升?

6、系统地介绍一下你研究的这个方向。最近你这个方向效果最好的论文是哪篇?它是怎么做的?

7、你有什么想问的吗?

三面没有算法题,感觉问的是一些方法论的东西。答得也还不错,没过几天就接到了HR的电话。

HR面

HR很亲切,面试体验很棒,上来先给我介绍了一下他们部门的一些发展历史和现在的情况,然后了解了一下我的实验室,实验室的研究方向,之前的实习情况,大概询问了可以入职的时间。整个面试下来感觉平时的积累很重要。

评论( 2
我要评论
  1. 论文太难了 2020-12-09 15:58:02
    你现在入职腾讯公司了嘛
    (0) 回复 举报
  2. 时间穿梭 2020-12-09 16:00:27
    你这次的面试问的也是蛮详细的。
    (0) 回复 举报

还可以上传7

表情
热帖排行
热门话题
  1. 01 270人参与
  2. 02 175人参与
  3. 03 109人参与
  4. 04 54人参与
  • QQ扫码
  • 微信扫码